The Third Edition of this widely used textbook for introductory cryptography courses enhances its predecessors by incorporating new sections, topics, and exercises. It focuses on the fundamental principles of modern cryptography, emphasizing formal definitions and rigorous proofs of security, making it a comprehensive resource for students in both mathematics and computer science.
Yehuda Lindell Knihy




This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.
Theory of cryptography
- 739 stránok
- 26 hodin čítania
This book constitutes the refereed proceedings of the 11th Theory of Cryptography Conference, TCC 2014, held in San Diego, CA, USA, in February 2014. The 30 revised full papers presented were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on obfuscation, applications of obfuscation, zero knowledge, black-box separations, secure computation, coding and cryptographic applications, leakage, encryption, hardware-aided secure protocols, and encryption and signatures.
In the setting of multi-party computation, sets of two or more parties with private inputs wish to jointly compute some (predetermined) function of their inputs. General results concerning secure two-party or multi-party computation were first announced in the 1980s. Put briefly, these results assert that under certain assumptions one can construct protocols for securely computing any desired multi-party functionality. However, this research relates only to a setting where a single protocol execution is carried out. In contrast, in modern networks, many different protocol executions are run at the same time. This book is devoted to the general and systematic study of secure multi-party computation under composition. Despite its emphasis on a theoretically well-founded treatment of the subject, general techniques for designing secure protocols are developed that may even result in schemes or modules to be incorporated in practical systems. The book clarifies fundamental issues regarding security in a multi-execution environment and gives a comprehensive and unique treatment of the composition of secure multi-party protocols.