Bookbot

Alexei Kulik

    Introduction to ergodic rates for Markov chains and processes
    Ergodic behavior of Markov processes
    • Ergodic behavior of Markov processes

      With Applications to Limit Theorems

      The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems

      Ergodic behavior of Markov processes
    • The present lecture notes aim for an introduction to the ergodic behaviour of Markov Processes and addresses graduate students, post-graduate students and interested readers. Different tools and methods for the study of upper bounds on uniform and weak ergodic rates of Markov Processes are introduced. These techniques are then applied to study limit theorems for functionals of Markov processes. This lecture course originates in two mini courses held at University of Potsdam, Technical University of Berlin and Humboldt University in spring 2013 and Ritsumameikan University in summer 2013.

      Introduction to ergodic rates for Markov chains and processes