Bookbot

Bartel L. van der Waerden

    2. február 1903 – 12. január 1996

    Bartel Leendert van der Waerden bol holandský matematik a historik matematiky. Jeho práca sa zameriavala na matematiku a jej históriu. Opisoval matematické koncepty a ich vývoj.

    Алгебра. Algebra
    Mathematische Statistik
    Algebra II
    Moderne Algebra
    Algebra I
    Algebra 1
    • Der Autor wurde am 2.2.1903 in Amsterdam geboren. Im Jahre 1924 ging er als Student nach Göttingen und wurde dort mit Emmy Noether und der abstrakten Algebra bekannt. Sein Hauptinteresse galt damals vor allem der Begründung der algebraischen Geometrie mit Hilfe der neuen algebraischen Methoden. Als er im Jahre 1926 als junger Doktor mit einem Rockefeller-Stipendium nach Hamburg kam, hatte er Gelegenheit, eine didaktisch hervorragende Algebra-Vorlesung von Emil Artin zu hören. Die Ausarbeitung, die er von dieser Vorlesung machte, wurde zum Kern des vorliegenden Werkes. Es erschien zuerst 1930 bis 1931 unter dem Titel „Moderne Algebra“ in der Sammlung „Grundlehren der mathematischen Wissenschaften“. In der Folge wurde das Werk in die englische, russische und chinesische Sprache übersetzt. Im Jahre 1928 wurde der Autor Professor an der Universität Groningen. Seit 1951 lebte und arbeitete er bis zu seiner Emeritierung in Zürich als Professor an der dortigen Universität. Heute lebt er in Zürich.

      Algebra 1
    • Algebra I

      • 272 stránok
      • 10 hodin čítania

      Der Autor wurde am 2.2.1903 in Amsterdam geboren. Im Jahre 1924 ging er als Student nach Gttingen und wurde dort mit Emmy Noether und der abstrakten Algebra bekannt. Sein Hauptinteresse galt damals vor allem der Begrndung der algebraischen Geometrie mit Hilfe der neuen algebraischen Methoden. Als er im Jahre 1926 als junger Doktor mit einem Rockefeller-Stipendium nach Hamburg kam, hatte er Gelegenheit, eine didaktisch hervorragende Algebra-Vorlesung von Emil Artin zu hren. Die Ausarbeitung, die er von dieser Vorlesung machte, wurde zum Kern des vorliegenden Werkes. Es erschien zuerst 1930 bis 1931 unter dem Titel "Moderne Algebra" in der Sammlung "Grundlehren der mathematischen Wissenschaften". In der Folge wurde das Werk in die englische, russische und chinesische Sprache bersetzt. Im Jahre 1928 wurde der Autor Professor an der Universitt Groningen. Seit 1951 lebte und arbeitete er bis zu seiner Emeritierung in Zrich als Professor an der dortigen Universitt. Heute lebt er in Zrich.

      Algebra I
    • Algebra II

      • 316 stránok
      • 12 hodin čítania

      In unnachahmlicher Weise versteht van der Waerden es, das Wesentliche einer mathematischen Theorie oder eines Teilgebietes verständlich und einprägsam zugleich darzustellen. Die beiden nun neu vorgelegten Bände der Algebra haben mehrere Generationen von Mathematikern als Einführung in die Algebra gedient, und viele greifen auch heute noch zu seinen Ausführungen, die nichts von ihrer Frische und Kraft verloren haben. Das Geleitwort von Jürgen Neukirch unterstreicht, welchen ganz besondern Stellenwert dieses Lehrbuch im deutschen Sprachraum einnimmt. Inhaltsverzeichnis Zwölftes Kapitel. Lineare Algebra.- § 84. Moduln über einem Ring.- § 85. Moduln über euklidische Ringe. Elementarteiler.- § 86. Der Hauptsatz über abelsche Gruppen.- § 87. Darstellungen und Darstellungsmoduln.- § 88. Normalformen für eine Matrix in einem kommutativen Körper.- § 89. Elementarteiler und charakteristische Funktion.- § 90. Quadratische und Hermitesche Formen.- § 91. Antisymmetrische Bilinearformen.- Dreizehntes Kapitel. Algebren.- § 92. Direkte Summen und Durchschnitte.- § 93. Beispiele von Algebren.- § 94. Produkte und verschränkte Produkte.- § 95. Algebren als Gruppen mit Operatoren. Moduln und Darstellungen.- § 96. Das kleine und das große Radikal.- § 97. Das Sternprodukt.- § 98. Ringe mit Minimalbedingung.- § 99. Zweiseitige Zerlegungen und Zentrumszerlegung.- § 100. Einfache und primitive Ringe.- § 101. Der Endomorphismenring einer direkten Summe.- § 102. Struktursätze für halbeinfache und einfache Ringe.- § 103. Das Verhalten der Algebren bei Erweiterung des Grundkörpers.- Vierzehntes Kapitel. Darstellungstheorie der Gruppen und Algebren.- § 104. Problemstellung.- § 105. Darstellung von Algebren.- § 106. Die Darstellungen des Zentrums.- § 107. Spuren und Charaktere.- § 108. Darstellungen endlicher Gruppen.- § 109. Gruppencharaktere.- § 110. Die Darstellungen der symmetrischen Gruppen.- § 111. Halbgruppen von linearen Transformationen.- § 112. Doppelmoduln und Produkte von Algebren.- § 113. Die Zerfällungskörper einer einfachen Algebra.- § 114. Die Brauersche Gruppe. Faktorensysteme.- Fünfzehntes Kapitel. Allgemeine Idealtheorie der kommutativen Ringe.- § 115. Noethersche Ringe.- § 116. Produkte und Quotienten von Idealen.- § 117. Primideale und Primärideale.- § 118. Der allgemeine Zerlegungssatz.- §119. Der erste Eindeutigkeitssatz.- § 120. Isolierte Komponenten und symbolische Potenzen.- § 121. Theorie der teilerfremden Ideale.- § 122. Einartige Ideale.- § 123. Quotientenringe.- § 124. Der Durchschnitt aller Potenzen eines Ideals.- § 125. Die Länge eines Primärideals. Primäridealketten in Noetherschen Ringen.- Sechzehntes Kapitel. Theorie der Polynomideale.- § 126. Algebraische Mannigfaltigkeiten.- § 127. Universalkörper.- § 128. Die Nullstellen eines Primideals.- § 129. Die Dimensionszahl.- § 130. Der Hilbertsche Nullstellensatz. Resultantensysteme für homogene Gleichungen.- § 131. Die Primärideale.- § 132. Der Noethersche Fundamentalsatz.- § 133. Zurückführung der mehrdimensionalen Ideale auf nulldimensionale.- Siebzehntes Kapitel. Ganze algebraische Größen.- § 134. Endliche ?-Moduln.- § 135. Ganze Größen in bezug auf einen Ring.- § 136. Die ganzen Größen eines Körpers.- § 137. Axiomatische Begründung der klassischen Idealtheorie.- § 138. Umkehrung und Ergänzung der Ergebnisse.- § 139. Gebrochene Ideale.- § 140. Idealtheorie beliebiger ganz-abgeschlossener Integritätsbereiche.- Achtzehntes Kapitel. Bewertete Körper.- § 141. Bewertungen.- § 142. Komplette Erweiterungen.- § 143. Die Bewertungen des Körpers der rationalen Zahlen.- § 144. Bewertung von algebraischen Erweiterungskörpern: Kompletter Fall.- § 145. Bewertung von algebraischen Erweiterungskörpern: Allgemeiner Fall.- § 146. Bewertungen von algebraischen Zahlkörpern.- § 147. Bewertungen des rationalen Funktionskörpers ? (x).- § 148. Der Approximationssatz.- Neunzehntes Kapitel. Algebraische Funktionen einer Variablen.- § 149. Reihenentwicklungen nach Ortsuniformisierenden.- § 150. Divisoren und ihre Multipla.- § 151. Das Geschlecht g.- § 152.Vektoren und Kovektoren.- § 153. Differentiale. Der Satz vom Spezialitätsindex.- § 154. Der Riemann-Rochsche Satz.- § 155. Separable Erzeugung von Funktionenkörpern.- § 156. Differentiale und Integrale im klassischen Fall.- § 157. Beweis des Residuensatzes.- Zwanzigstes Kapitel. Topologische Algebra.- § 158. Der Begriff topologischer Raum.- § 159. Umgebungsbasen.- § 160. Stetigkeit. Limites.- § 161. Trennungs- und Abzählbarkeitsaxiome.- § 162. Topologische Gruppen.- § 163. Die Umgebungen der Eins.- § 164. Untergruppen und Faktorgruppen.- § 165. T-Ringe und T-Schiefkörper.- § 166. Gruppenkomplettierung durch Fundamentalfolgen.- § 167. Filter.- § 168. Gruppenkomplettierung durch Cauchy-Filter.- § 169. Topologische Vektorräume.- § 170. Ringkomplettierung.- § 171. Komplettierung von Schiefkörpern.- Namen- und Sachverzeichnis.

      Algebra II