Bookbot

Bernhard Schölkopf

    Bernhard Schölkopf je poprednou postavou v oblasti strojového učenia, známy svojimi základnými príspevkami ku kernelovým metódam a klasifikátorom s veľkým rozpätím. Jeho práca skúma teoretické základy a praktické aplikácie umelej inteligencie, pričom sa zameriava na to, ako sa stroje môžu učiť z dát efektívnymi a robustnými spôsobmi. Prostredníctvom svojho výskumu a vplyvných publikácií významne formoval smer moderného AI a sprístupnil zložité koncepty širšej vedeckej komunite.

    Support vector learning
    Learning theory and kernel machines
    Empirical inference
    • Empirical inference

      • 287 stránok
      • 11 hodin čítania

      This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever

      Empirical inference
    • Learning theory and kernel machines

      • 746 stránok
      • 27 hodin čítania

      This book constitutes the joint refereed proceedings of the 16th Annual Conference on Computational Learning Theory, COLT 2003, and the 7th Kernel Workshop, Kernel 2003, held in Washington, DC in August 2003. The 47 revised full papers presented together with 5 invited contributions and 8 open problem statements were carefully reviewed and selected from 92 submissions. The papers are organized in topical sections on kernel machines, statistical learning theory, online learning, other approaches, and inductive inference learning.

      Learning theory and kernel machines