Bookbot

Symplectic geometry of integrable Hamiltonian systems

Parametre

  • 240 stránok
  • 9 hodin čítania

Viac o knihe

Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).

Vydanie

Nákup knihy

Symplectic geometry of integrable Hamiltonian systems, Michéle Audin

Jazyk
Rok vydania
2003
product-detail.submit-box.info.binding
(mäkká)
Akonáhle sa objaví, pošleme e-mail.

Platobné metódy

Nikto zatiaľ neohodnotil.Ohodnotiť